
CONTRIBUTED RESEARCH ARTICLE 1

Taming PITCHf/x Data with XML2R and
pitchRx
by Carson Sievert

Abstract XML2R is a framework that reduces the effort required to transform XML content into tables
in a way that preserves parent to child relationships. pitchRx applies XML2R’s grammar for XML
manipulation to Major League Baseball Advanced Media (MLBAM)’s Gameday data. With pitchRx,
one can easily obtain and store Gameday data in a remote database. The Gameday website hosts a
wealth of XML data, but perhaps most interesting is PITCHf/x. Among other things, PITCHf/x data
can be used to recreate a baseball’s flight path from a pitcher’s hand to home plate. With pitchRx, one
can easily create animations and interactive 3D scatterplots of the baseball’s flight path. PITCHf/x data
is also commonly used to generate a static plot of baseball locations at the moment they cross home
plate. These plots, sometimes called strike-zone plots , can also refer to a plot of event probabilities
over the same region. pitchRx provides an easy and robust way to generate strike-zone plots using
the ggplot2 package.

Introduction

What is PITCHf/x?

PITCHf/x is a general term for a system of cameras which tracks the flight of a baseball with a series
of 3D measurements. These measurements define a baseball’s flight path from a pitcher’s hand to
home plate.1 A best fitting parametric curve is fit to these measurements under the assumption of
constant acceleration (Alt and White, 2008). There are studies that suggest that this assumption is
quite reasonable – especially for non-knuckleballs (Nathan, 2008). In other words, the smoothed
flight paths are often a reasonable approximation (within a couple of inches) of the real path. The
parameters used to fit this curve are made available in XML format on a publicly accessible website.
This website, maintained by MLBAM, also hosts a wealth of other baseball related data used to inform
MLB’s Gameday webcast in near real time.

Why is PITCHf/x important?

On the business side of baseball, using statistical analysis to scout and evaluate players has become
mainstream. When PITCHf/x was first introduced, (DiMeo, 2007) proclaimed it as,

“The new technology that will change statistical analysis [of baseball] forever.”

PITCHf/x has yet to fully deliver this claim, partially due to the difficulty in accessing and deriving
insight from the large amount of complex information. By providing better tools to collect and
visualize this data, pitchRx makes PITCHf/x analysis more accessible to the general public.

PITCHf/x applications

PITCHf/x data is and can be used for many different projects. It can also complement other baseball
data sources, which poses an interesting database management problem. Statistical analysis of
PITCHf/x data and baseball in general has become so popular that it has helped expose statistical
ideas and practice to the general public. If you have witnessed television broadcasts of MLB games, you
know one obvious application of PITCHf/x is locating pitches in the strike-zone as well as recreating
flight trajectories, tracking pitch speed, etc. Some well-known and statistically intriguing problems
related to PITCHf/x include: classifying pitch types, predicting pitch sequences, and clustering
pitchers with similar tendencies (Pane et al., 2013).

Contributions of pitchRx and XML2R

pitchRx has two main focuses (Sievert, 2014b). The first focus is to provide easy access to Gameday
data. Not only is pitchRx helpful for collecting this data in bulk, but it has served as a helpful
teaching and research aide (http://baseballwithr.wordpress.com/ is one such example). Methods

1A pitcher throws a ball to the opposing batter , who stands besides home plate and tries to hit the ball into the
field of play.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://CRAN.R-project.org/package=pitchRx
http://baseballwithr.wordpress.com/

CONTRIBUTED RESEARCH ARTICLE 2

for collecting Gameday data existed prior to pitchRx; however, these methods are not easily extensible
and require juggling technologies that may not be familiar or accessible (Fast, 2007). Moreover, these
working environments are less desirable than R for data analysis and visualization. Since pitchRx is
built upon XML2R’s united framework, it can be easily modified and/or extended (Sievert, 2014a).
For this same reason, pitchRx serves as a model for building customized XML data collection tools
with XML2R.

The other main focus of pitchRx is to simplify the process creating popular PITCHf/x graphics.
Strike-zone plots and animations made via pitchRx utilize the extensible ggplot2 framework as well
as various customized options (Wickham, 2009). ggplot2 is a convenient framework for generating
strike-zone plots primarily because of its facet schema which allows one to make visual comparisons
across any combination of discrete variable(s). Interactive 3D scatterplots are based on the rgl package
and useful for gaining a new perspective on flight trajectories (Adler et al.).

Getting familiar with Gameday

Gameday data is hosted and made available for free thanks to MLBAM via http://gd2.mlb.com/
components/game/mlb/.2 From this website, one can obtain many different types of data besides
PITCHf/x. For example, one can obtain everything from structured media metadata to insider tweets.
In fact, this website’s purpose is to serve data to various http://mlb.com web pages and applications.
As a result, some data is redundant and the format may not be optimal for statistical analysis. For
these reasons, the scrape function is focused on retrieving data that is useful for PITCHf/x analysis
and providing it in a convenient format for data analysis.

Navigating through the MLBAM website can be overwhelming, but it helps to recognize that a
homepage exists for nearly every day and every game. For example, http://gd2.mlb.com/components/
game/mlb/year_2011/month_02/day_26/ displays numerous hyperlinks to various files specific to
February 26th, 2011. On this page is a hyperlink to miniscoreboard.xml which contains information on
every game played on that date. This page also has numerous hyperlinks to game specific pages. For
example, gid_2011_02_26_phimlb_nyamlb_1/ points to the homepage for that day’s game between
the NY Yankees and Philadelphia Phillies. On this page is a hyperlink to the players.xml file which
contains information about the players, umpires, and coaches (positions, names, batting average, etc.)
coming into that game.

Starting from a particular game’s homepage and clicking on the inning/ directory, we should see
another page with links to the inning_all.xml file and the inning_hit.xml file. If it is available, the
inning_all.xml file contains the PITCHf/x data for that game. It’s important to note that this file
won’t exist for some games, because some games are played in venues that do not have a working
PITCHf/x system in place. This is especially true for preseason games and games played prior to
the 2008 season when the PITCHf/x system became widely adopted.3 The inning_hit.xml files have
manually recorded spatial coordinates of where a home run landed or where the baseball made initial
contact with a defender after it was hit into play.

The relationship between these XML files and the tables returned by scrape is presented in Table 1.
The pitch table is extracted from files whose name ends in inning_all.xml. This is the only table
returned by scrape that contains data on the pitch-by-pitch level. The atbat, runner, action and hip
tables from this same file are commonly labeled somewhat ambiguously as play-by-play data. The
player, coach, and umpire tables are extracted from players.xml and are classified as game-by-game
since there is one record per person per game. Figure 1 shows how these tables can be connected
to one another in a database setting. The direction of the arrows represent a one to possibly many
relationship. For example, at least one pitch is thrown for each at bat (that is, each bout between
pitcher and batter) and there are numerous at bats within each game.

In a rough sense, one can relate tables returned by scrape back to XML nodes in the XML files.
For convenience, some information in certain XML nodes are combined into one table. For example,
information gleaned from the ‘top’, ‘bottom’, and ‘inning’ XML nodes within inning_all.xml are
included as inning and inning_side fields in the pitch, po, atbat, runner, and action tables. This
helps reduce the burden of merging many tables together in order to have inning information on the
play-by-play and/or pitch-by-pitch level. Other information is simply ignored simply because it is
redundant. For example, the ‘game’ node within the players.xml file contains information that can be
recovered from the game table extracted from the miniscoreboard.xml file. If the reader wants a more
detailed explanation of fields in these tables, Marchi and Albert (2013) provide nice overview.

2Please be respectful of this service and store any information after you extract it instead of repeatedly querying
the website. Before using any content from this website, please also read the copyright.

3In this case, scrape will print “failed to load HTTP resource” in the R console (after the relevant file name) to
indicate that no data was available.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://CRAN.R-project.org/package=XML2R
http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=rgl
http://gd2.mlb.com/components/game/mlb/
http://gd2.mlb.com/components/game/mlb/
http://gd2.mlb.com/components/game/mlb/year_2013/month_07/day_16/gid_2013_07_16_aasmlb_nasmlb_1/media/instadium.xml
http://gd2.mlb.com/components/game/mlb/twitter/anaInsiderTweets.xml
http://mlb.com
http://gd2.mlb.com/components/game/mlb/year_2011/month_02/day_26/
http://gd2.mlb.com/components/game/mlb/year_2011/month_02/day_26/
http://gd2.mlb.com/components/game/mlb/year_2011/month_02/day_26/miniscoreboard.xml
http://gd2.mlb.com/components/game/mlb/year_2011/month_02/day_26/gid_2011_02_26_phimlb_nyamlb_1/
http://gd2.mlb.com/components/game/mlb/year_2011/month_02/day_26/gid_2011_02_26_phimlb_nyamlb_1/players.xml
http://gd2.mlb.com/components/game/mlb/year_2011/month_02/day_26/gid_2011_02_26_phimlb_nyamlb_1/inning/
http://gd2.mlb.com/components/game/mlb/year_2011/month_02/day_26/gid_2011_02_26_phimlb_nyamlb_1/inning/inning_all.xml
http://gd2.mlb.com/components/game/mlb/year_2011/month_02/day_26/gid_2011_02_26_phimlb_nyamlb_1/inning/inning_hit.xml
http://gdx.mlb.com/components/copyright.txt

CONTRIBUTED RESEARCH ARTICLE 3

Source file
suffix

Information
level XML nodes Tables returned

by scrape

miniscoreboard.xml game-by-game games, game,
game_media, media game, media

players.xml game-by-game game, team, player,
coach, umpire

player, coach,
umpire

inning_all.xml
play-by-play,
pitch-by-pitch

game, inning, bottom, top,
atbat, po, pitch, runner, action

atbat, po, pitch,
runner, action

inning_hit.xml play-by-play hitchart, hip hip

Table 1: Structure of PITCHf/x and related Gameday data sources accessible to scrape

Figure 1: Table relations between Gameday data accessible via scrape. The direction of the arrows
indicate a one to possibly many relationship.

Introducing XML2R

XML2R adds to the CRAN Task View on Web Technologies and Services by focusing on the trans-
formation of XML content into a collection of tables. Compared to a lower-level API like the XML
package, it can significantly reduce the amount of coding and cognitive effort required to perform such
a task. In contrast to most higher-level APIs, it does not make assumptions about the XML structure or
its source. Although XML2R works on any structure, performance and user experience are enhanced
if the content has an inherent relational structure. XML2R’s novel approach to XML data collection
breaks down the transformation process into a few simple steps and allows the user to decide how to
apply those steps.

The next few sections demonstrate how pitchRx leverages XML2R in order to produce a collection
of tables from inning_all.xml files. A similar approach is used by pitchRx::scrape to construct
tables from the other Gameday files in Table 1. In fact, XML2R has also been implemented in the R
package bbscrapeR which collects data from nba.com and wnba.com.

Constructing file names

Sometimes the most frustrating part of obtaining data in bulk off of the web is finding the proper
collection of URLs or file names of interest. Since files on the Gameday website are fairly well
organized, the makeUrls function can be used to construct urls that point to every game’s homepage
within a window of dates.

urls <- makeUrls(start = "2011-06-01", end = "2011-06-01")
sub("http://gd2.mlb.com/components/game/mlb/", "", head(urls))

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://cran.r-project.org/web/views/WebTechnologies.html
https://github.com/cpsievert/bbscrapeR
http://nba.com
http://wnba.com

CONTRIBUTED RESEARCH ARTICLE 4

[1] "year_2011/month_06/day_01/gid_2011_06_01_anamlb_kcamlb_1"
[2] "year_2011/month_06/day_01/gid_2011_06_01_balmlb_seamlb_1"
[3] "year_2011/month_06/day_01/gid_2011_06_01_chamlb_bosmlb_1"
[4] "year_2011/month_06/day_01/gid_2011_06_01_clemlb_tormlb_1"
[5] "year_2011/month_06/day_01/gid_2011_06_01_colmlb_lanmlb_1"
[6] "year_2011/month_06/day_01/gid_2011_06_01_flomlb_arimlb_1"

Extracting observations

Once we have a collection of XML files, the next step is to parse the content into a list of observations .
An observation is technically defined as a matrix with one row and some number of columns. The
columns are defined by XML attributes and the XML value (if any) for a particular XML lineage. The
name of each observation tracks the XML hierarchy so observations can be grouped together in a
sensible fashion at a later point.

library(XML2R)
files <- paste0(urls, "/inning/inning_all.xml")
obs <- XML2Obs(files, url.map = TRUE, quiet = TRUE)
table(names(obs))

game game//inning
15 137

game//inning//bottom//action game//inning//bottom//atbat
116 532

game//inning//bottom//atbat//pitch game//inning//bottom//atbat//po
1978 61

game//inning//bottom//atbat//runner game//inning//top//action
373 150

game//inning//top//atbat game//inning//top//atbat//pitch
593 2183

game//inning//top//atbat//po game//inning//top//atbat//runner
75 509

url_map
1

This output tells us that 1978 pitches were thrown in the bottom inning and 2183 were thrown in the
top inning on June 1st, 2011. Also, there are 12 different levels of observations. The list element named
url_map is not considered an observation and was included since url.map = TRUE. This helps avoid
repeating long file names in the url_key column which tracks the mapping between observations and
file names.

obs[c(1, 2500)]

$‘game//inning//top//atbat//pitch‘
des id type tfs tfs_zulu x y

[1,] "Called Strike" "3" "S" "161107" "2011-06-01T20:11:07Z" "103.00" "149.38"
sv_id start_speed end_speed sz_top sz_bot pfx_x pfx_z

[1,] "110601_151108" "94.0" "86.1" "2.85" "1.36" "-8.12" "11.0"
px pz x0 y0 z0 vx0 vy0 vz0

[1,] "-0.143" "2.376" "-2.435" "50.0" "5.831" "9.058" "-137.334" "-7.288"
ax ay az break_y break_angle break_length pitch_type

[1,] "-15.446" "31.474" "-11.175" "23.8" "46.3" "4.0" "FT"
type_confidence zone nasty spin_dir spin_rate cc mt url_key

[1,] ".909" "2" "39" "216.336" "2753.789" "" "" "url1"

$‘game//inning//bottom//atbat//runner‘
id start end event url_key

[1,] "471083" "2B" "3B" "Field Error" "url6"

Renaming observations

Before grouping observations into a collection tables based on their names, one may want to re_name
observations. Observations with names ’game//inning//bottom//atbat’ and ’game//inning//top//atbat’

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 5

should be included in the same table since they share XML attributes (in other words, the observations
share variables).

tmp <- re_name(obs, equiv = c("game//inning//top//atbat",
"game//inning//bottom//atbat"), diff.name = "inning_side")

By passing these names to the equiv argument, re_name determines the difference in the naming
scheme and suppresses that difference. In other words, observation names that match the equiv
argument will be renamed to ’game//inning//atbat’. The information removed from the name is
not lost; however, as a new column is appended to the end of each relevant observation. For example,
notice how the inning_side column contains the part of the name we just removed:

tmp[grep("game//inning//atbat", names(tmp))][1:2]

$‘game//inning//atbat‘
num b s o start_tfs start_tfs_zulu batter stand b_height

[1,] "1" "3" "2" "0" "161034" "2011-06-01T20:10:34Z" "430947" "L" "5-10"
pitcher p_throws

[1,] "462956" "R"
des

[1,] "Erick Aybar singles on a line drive to center fielder Melky Cabrera. "
event url_key inning_side

[1,] "Single" "url1" "top"

$‘game//inning//atbat‘
num b s o start_tfs start_tfs_zulu batter stand b_height

[1,] "2" "2" "3" "1" "161412" "2011-06-01T20:14:12Z" "110029" "L" "6-0"
pitcher p_throws des event

[1,] "462956" "R" "Bobby Abreu called out on strikes. " "Strikeout"
url_key inning_side

[1,] "url1" "top"

For similar reasons, other observation name pairs are renamed in a similar fashion.

tmp <- re_name(tmp, equiv = c("game//inning//top//atbat//runner",
"game//inning//bottom//atbat//runner"), diff.name = "inning_side")

tmp <- re_name(tmp, equiv = c("game//inning//top//action",
"game//inning//bottom//action"), diff.name = "inning_side")

tmp <- re_name(tmp, equiv = c("game//inning//top//atbat//po",
"game//inning//bottom//atbat//po"), diff.name = "inning_side")

obs2 <- re_name(tmp, equiv = c("game//inning//top//atbat//pitch",
"game//inning//bottom//atbat//pitch"), diff.name = "inning_side")

table(names(obs2))

game game//inning
15 137

game//inning//action game//inning//atbat
266 1125

game//inning//atbat//pitch game//inning//atbat//po
4161 136

game//inning//atbat//runner url_map
882 1

Linking observations

After all that renaming, we now have 7 different levels of observations. Let’s examine the first three
observations on the game//inning level:

obs2[grep("^game//inning$", names(obs2))][1:3]

$‘game//inning‘
num away_team home_team next url_key

[1,] "1" "ana" "kca" "Y" "url1"

$‘game//inning‘
num away_team home_team next url_key

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 6

[1,] "2" "ana" "kca" "Y" "url1"

$‘game//inning‘
num away_team home_team next url_key

[1,] "3" "ana" "kca" "Y" "url1"

Before grouping observations into tables, it is usually important preserve the parent-to-child rela-
tionships in the XML lineage. For example, one may want to map a particular pitch back to the
inning in which it was thrown. Using the add_key function, the relevant value of num for game//inning
observations can be recycled to its XML descendants.

obswkey <- add_key(obs2, parent = "game//inning", recycle = "num", key.name = "inning")

A key for the following children will be generated for the game//inning node:
game//inning//atbat//pitch
game//inning//atbat//runner
game//inning//atbat
game//inning//action
game//inning//atbat//po

As it turns out, the away_team and home_team columns are redundant as this information is embedded
in the url column. Thus, there is only one other informative attribute on this level which is next. By
recycling this value among its descendants, we remove any need to retain a game//inning table.

obswkey <- add_key(obswkey, parent = "game//inning", recycle = "next")

A key for the following children will be generated for the game//inning node:
game//inning//atbat//pitch
game//inning//atbat//runner
game//inning//atbat
game//inning//action
game//inning//atbat//po

It is also imperative that we can link a pitch, runner, or po back to a particular atbat. This can be
done as follows:

obswkey <- add_key(obswkey, parent = "game//inning//atbat", recycle = "num")

A key for the following children will be generated for the game//inning//atbat node:
game//inning//atbat//pitch
game//inning//atbat//runner
game//inning//atbat//po

Collapsing observations

Finally, we are in a position to pool together observations that have a common name. The collapse_obs
function achieves this by row binding observations with the same name together and returning a list
of matrices. Note that collapse_obs does not require that observations from the same level to have
the same set of variables in order to be bound into a common table. In the case where variables are
missing, NAs will be inserted as values.

tables <- collapse_obs(obswkey)
#As mentioned before, we do not need the ’inning’ table
tables <- tables[-grep("^game//inning$", names(tables))]
table.names <- c("game", "action", "atbat", "pitch", "po", "runner")
tables <- setNames(tables, table.names)
head(tables[["runner"]])

id start end event url_key inning_side inning next
[1,] "430947" "" "1B" "Single" "url1" "top" "1" "Y"
[2,] "430947" "1B" "2B" "Stolen Base 2B" "url1" "top" "1" "Y"
[3,] "430947" "2B" "3B" "Groundout" "url1" "top" "1" "Y"
[4,] "430947" "3B" "" "Groundout" "url1" "top" "1" "Y"
[5,] "543333" "" "1B" "Single" "url1" "bottom" "1" "Y"
[6,] "543333" "1B" "" "Pickoff Attempt 1B" "url1" "bottom" "1" "Y"

num score rbi earned
[1,] "1" NA NA NA

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 7

[2,] "2" NA NA NA
[3,] "3" NA NA NA
[4,] "4" NA NA NA
[5,] "7" NA NA NA
[6,] "8" NA NA NA

Collecting Gameday data with pitchRx

The main scraping function in pitchRx, scrape, can be used to easily obtain data from the files listed
in Table 1. In fact, any combination of these files can be queried using the suffix argument. In the
example below, the start and end arguments are also used so that all available file types for June 1st,
2011 are queried.

library(pitchRx)
files <- c("inning/inning_all.xml", "inning/inning_hit.xml",
"miniscoreboard.xml", "players.xml")

dat <- scrape(start = "2011-06-01", end = "2011-06-01", suffix = files)

The game.ids option can be used instead of start and end to obtain an equivalent dat object. This
option can be useful if the user wants to query specific games rather than all games played over a
particular time span. When using this game.ids option, the built-in gids object, is quite convenient.

data(gids, package = "pitchRx")
gids11 <- gids[grep("2011_06_01", gids)]
head(gids11)

[1] "gid_2011_06_01_anamlb_kcamlb_1" "gid_2011_06_01_balmlb_seamlb_1"
[3] "gid_2011_06_01_chamlb_bosmlb_1" "gid_2011_06_01_clemlb_tormlb_1"
[5] "gid_2011_06_01_colmlb_lanmlb_1" "gid_2011_06_01_flomlb_arimlb_1"

dat <- scrape(game.ids = gids11, suffix = files)

The object dat is a list of data frames containing all data available for June 1st, 2011 using scrape.
The list names match the table names provided in Table 1. For example, dat$atbat is data frame
with every at bat on June 1st, 2011 and dat$pitch has information related to the outcome of each
pitch (including PITCHf/x parameters). The object.size of dat is nearly 300MB. Multiplying this
number by 100 days exceeds the RAM limitations on most machines. Thus, if a large amount of data
is required, the user should exploit the R database interface (R Special Interest Group on Databases,
2013).

Storing and querying Gameday data

Since PITCHf/x data can easily exhaust random-access memory, one should consider establishing a
database instance before using scrape. By passing a database connection to the connect argument,
scrape will try to create (and/or append to existing) tables using that connection. If the connection
fails for some reason, tables will be written as csv files in the current working directory. The benefits
of using the connect argument includes improved memory management which can greatly reduce
run time. connect will support a MySQL connection, but creating a SQLite database is quite easy with
dplyr (Wickham and Francois, 2014).

library(dplyr)
my_db <- src_sqlite("GamedayDB.sqlite3", create = TRUE)
Collect and store all PITCHf/x data from 2008 to 2013
scrape(start = "2008-01-01", end = "2014-01-01",
suffix = "inning/inning_all.xml", connect = my_db$con)

In the later sections, animations of four-seam and cut fastballs thrown by Mariano Rivera and Phil
Hughes during the 2011 season are created. In order to obtain the necessary data, one must set criteria
on: values of the pitcher_name field in the pitch table, values of the des field in the atbat table, and
the url field in both tables. Thus, to speed the time to execute such a query, one should create an index
on these three fields.

dbSendQuery(my_db$con, "CREATE INDEX url_atbat ON atbat(url)")
dbSendQuery(my_db$con, "CREATE INDEX url_pitch ON pitch(url)")
dbSendQuery(my_db$con, "CREATE INDEX pitcher_index ON atbat(pitcher_name)")
dbSendQuery(my_db$con, "CREATE INDEX des_index ON pitch(des)")

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://CRAN.R-project.org/package=dplyr

CONTRIBUTED RESEARCH ARTICLE 8

Although our desired query could be expressed entirely in SQL, dplyr’s grammar for data manipu-
lation (which is database agnostic) can help to simplify the task. First, create pitch11 and atbat11
which are representations of 2011 data in my_db. That is, pitch11 does not actually pull data from every
pitch from 2011 into memory, but is a portrayal of the relevant data sitting in my_db.

pitch11 <- tbl(my_db, sql("SELECT * FROM pitch WHERE pitch.url LIKE ’%year_2011%’"))
atbat11 <- tbl(my_db, sql("SELECT * FROM atbat WHERE atbat.url LIKE ’%year_2011%’"))

Next, filter the atbat11 table to restrict to at bats in 2011 where either Rivera or Hughes was the
pitcher. Then filter the pitch11 table to include only four-seam (FF) and cut (FC) fastballs from 2011.
By taking an inner_join of these two filtered tables, we are left with one table representing the data
of interest. Lastly, collect the resulting database query in order to bring the relevant data into the R
session.

bats <- filter(atbat11,
pitcher_name == "Mariano Rivera" | pitcher_name == "Phil Hughes")

FBs <- filter(pitch11, pitch_type == "FF" | pitch_type == "FC")
pitches <- collect(inner_join(FBs, bats))

Visualizing PITCHf/x

Strike-zone plots and umpire bias

Amongst the most common PITCHf/x graphics are strike-zone plots. Such a plot has two axes and
the coordinates represent the location of baseballs as they cross home plate. The term strike-zone plot
can refer to either density or probabilistic plots. Density plots are useful for exploring what actually
occurred, but probabilistic plots can help address much more interesting questions using statistical
inference. Although probabilistic plots can be used to visually track any event probability across
the strike-zone, their most popular use is for addressing umpire bias in a strike versus ball decision
Green and Daniels (2014). The probabilistic plots section demonstrates how pitchRx simplifies the
process behind creating such plots via a case study on the impact of home field advantage on umpire
decisions.

In the world of sports, it is a common belief that umpires (or referees) have a tendency to favor
the home team. PITCHf/x provides a unique opportunity to add to this discussion by modeling the
probability of a called strike at home games versus away games. Specifically, conditioned upon the
umpire making a decision at a specific location in the strike-zone, if the probability that a home pitcher
receives a called strike is higher than the probability that an away pitcher receives a called strike, then
there is evidence to support umpire bias towards a home pitcher.

There are many different possible outcomes of each pitch, but we can condition on the umpire
making a decision by limiting to the following two cases. A called strike is an outcome of a pitch where
the batter does not swing and the umpire declares the pitch a strike (which is a favorable outcome for
the pitcher). A ball is another outcome where the batter does not swing and the umpire declares the
pitch a ball (which is a favorable outcome for the batter). All decisions made starting in 2008 can be
obtained from my_db with the following query using dplyr.

pitch <- select(tbl(my_db, "pitch"), px, pz, des)
atbat <- select(tbl(my_db, "atbat"), b_height, p_throws, stand, inning_side)
decisions <- collect(inner_join(pitch, atbat))
#This indicator is used as a response when constructing probabilistic plots
decisions$strike <- as.numeric(decisions$des %in% "Called Strike")

Density plots

The decisions data frame contains data on over 2.5 million pitches thrown from 2008 to 2013. About
a third of them are called strikes and two-thirds balls. Figure 2 shows the density of all called strikes.
Clearly, most called strikes occur on the outer region of the strike-zone. Many factors could contribute
to this phenomenon; which we will not investigate here.

strikeFX uses the stand variable to calculate strike-zones
Here is a slick way to create better labels for stand without changing its values
relabel <- function(variable, value) {
value <- sub("^R$", "Right-Handed Batter", value)
sub("^L$", "Left-Handed Batter", value)

}

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 9

strikes <- subset(decisions, strike == 1)
strikeFX(strikes, geom = "tile", layer = facet_grid(. ~ stand, labeller = relabel))

Left−Handed Batter Right−Handed Batter

1

2

3

4

−2 −1 0 1 2 −2 −1 0 1 2
Horizontal Pitch Location

H
ei

gh
t f

ro
m

 G
ro

un
d

0.1

0.2

0.3

0.4

0.5
density

Figure 2: Density of called strikes for right-handed batters and left-handed batters (from 2008 to
2013).

Figure 2 shows one static rectangle (or strike-zone) per plot automatically generated by strikeFX.
The definition of the strike-zone is notoriously ambiguous. As a result, the boundaries of the strike-
zone may be noticeably different in some situations. However, we can achieve a fairly accurate
representation of strike-zones using a rectangle defined by batters’ average height and stance (Fast,
2011). As Figure 4 reinforces, batter stance makes an important difference since the strike-zone seems to
be horizontally shifted away from the batter. The batter’s height is also important since the strike-zone
is classically defined as approximately between the batter’s knees and armpits.

Figure 2 has is one strike-zone per plot since the layer option contains a ggplot2 argument that
facets according to batter stance. Facet layers are a powerful tool for analyzing PITCHf/x data because
they help produce quick and insightful comparisons. In addition to using the layer option, one can
add layers to a graphic returned by strikeFX using ggplot2 arithmetic. It is also worth pointing
out that Figure 2 could have been created without introducing the strikes data frame by using the
density1 and density2 options.

strikeFX(decisions, geom = "tile", density1 = list(des = "Called Strike"),
density2 = list(des = "Called Strike")) + facet_grid(. ~ stand, labeller = relabel)

In general, when density1 and density2 are identical, the result is equivalent to subsetting the data
frame appropriately beforehand. More importantly, by specifying different values for density1 and
density2, differenced densities are easily generated. In this case, a grid of density estimates for
density2 are subtracted from the corresponding grid of density estimates for density1. Note that
the default NULL value for either density option infers that the entire data set defines the relevant
density. Thus, if density2 was NULL (when density1 = list(des = ’Called Strike’)), we would
obtain the density of called strikes minus the density of both called strikes and balls. In Figure 3, we
define density1 as called strikes and define density2 as balls. As expected, we see positive density
values (in blue) inside the strike-zone and negative density values (in red) outside of the strike-zone.

strikeFX(decisions, geom = "tile", density1 = list(des = "Called Strike"),
density2 = list(des = "Ball"), layer = facet_grid(. ~ stand, labeller = relabel))

These density plots are helpful for visualizing the observed frequency of events; however, they are
not very useful for addressing our umpire bias hypothesis. Instead of looking simply at the density,
we want to model the probability of a strike called at each coordinate given the umpire has to make a
decision.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 10

Left−Handed Batter Right−Handed Batter

1

2

3

4

−2 −1 0 1 2 −2 −1 0 1 2
Horizontal Pitch Location

H
ei

gh
t f

ro
m

 G
ro

un
d

0.0

0.2

0.4

value

Figure 3: Density of called strikes minus density of balls for both right-handed batters and left-handed
batters (from 2008 to 2013). The blue region indicates a higher frequency of called strikes and the red
region indicates a higher frequency of balls.

Probabilistic plots

There are many approaches to probabilistic modeling over a two dimensional spatial region. Since our
response is often categorical, generalized additive models (GAMs) is a popular and desirable approach
to modeling events over the strike-zone (Mills, 2010). There are numerous R package implementations
of GAMs, but the bam function from the mgcv package has several desirable properties (Wood, 2006).
Most importantly, the smoothing parameter can be estimated using several different methods. In
order to have a reasonable estimate of the smooth 2D surface, GAMs require fairly large amount of
observations. As a result, run time can be an issue – especially when modeling 2.5 million observations!
Thankfully, the bam function has a cluster argument which allows one to distribute computations
across multiple cores using the built in parallel package.

library(parallel)
cl <- makeCluster(detectCores() - 1)
library(mgcv)
m <- bam(strike ~ interaction(stand, p_throws, inning_side) +
s(px, pz, by = interaction(stand, p_throws, inning_side)),
data = decisions, family = binomial(link = ’logit’), cluster = cl)

This formula models the probability of a strike as a function of the baseball’s spatial location, the
batter’s stance, the pitcher’s throwing arm, and the side of the inning. Since home pitchers always
pitch during the top of the inning, inning_side also serves as an indication of whether a pitch is
thrown by a home pitcher. In this case, the interaction function creates a factor with eight different
levels since every input factor has two levels. Consequently, there are 8 different levels of smooth
surfaces over the spatial region defined by px and pz.

The fitted model m contains a lot of information which strikeFX uses in conjunction with any
ggplot2 facet commands to infer which and how surfaces should be plotted. In particular, the
var.summary is used to identify model covariates, as well their default conditioning values. In our
case, the majority of decisions are from right-handed pitchers and the top of the inning. Thus, the
default conditioning values are "top" for inning_side and "R" for p_throws. If different conditioning
values are desired, var.summary can be modified accordingly. To demonstrate, Figure 4 shows 2 of the
8 possible surfaces that correspond to a right-handed away pitcher.

away <- list(inning_side = factor("bottom", levels = c("top", "bottom")))
m$var.summary <- modifyList(m$var.summary, away)
strikeFX(decisions, model = m, layer = facet_grid(. ~ stand, labeller = relabel))

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://CRAN.R-project.org/package=mgcv

CONTRIBUTED RESEARCH ARTICLE 11

Left−Handed Batter Right−Handed Batter

1

2

3

4

−2 −1 0 1 2 −2 −1 0 1 2
Horizontal Pitch Location

H
ei

gh
t f

ro
m

 G
ro

un
d

0.25

0.50

0.75

value

Figure 4: Probability that a right-handed away pitcher receives a called strike (provided the umpire
has to make a decision). Plots are faceted by the handedness of the batter.

Using the same intuition exploited earlier to obtain differenced density plots, we can easily obtain
differenced probability plots. To obtain Figure 5, we simply add p_throws as another facet variable
and inning_side as a differencing variable. In this case, conditioning values do not matter since every
one of the 8 surfaces are required in order to produce Figure 5.

Function to create better labels for both stand and p_throws
relabel2 <- function(variable, value) {
if (variable %in% "stand")
return(sub("^L$", "Left-Handed Batter",
sub("^R$", "Right-Handed Batter", value)))

if (variable %in% "p_throws")
return(sub("^L$", "Left-Handed Pitcher",
sub("^R$", "Right-Handed Pitcher", value)))

}
strikeFX(decisions, model = m, layer = facet_grid(p_throws ~ stand, labeller = relabel2),
density1 = list(inning_side = "top"), density2 = list(inning_side = "bottom"))

The four different plots in Figure 5 represent the four different combination of values among
p_throws and stand. In general, provided that a pitcher throws to a batter in the blue region, the
pitch is more likely to be called a strike if the pitcher is on their home turf. Interestingly, there is a
well-defined blue elliptical band around the boundaries of the typical strike-zone. Thus, home pitchers
are more likely to receive a favorable call – especially when the classification of the pitch is in question.
In some areas, the home pitcher has up to a 6 percent higher probability of receiving a called strike
than an away pitcher. The subtle differences in spatial patterns across the different values of p_throws
and stand are interesting as well. For instance, pitching at home has a large positive impact for a
left-handed pitcher throwing in the lower inside portion of the strike-zone to a right-handed batter,
but the impact seems negligible in the mirror opposite case.

Differenced probabilistic densities are clearly an interesting visual tool for analyzing PITCHf/x
data. With strikeFX, one can quickly and easily make all sorts of visual comparisons for various
situations. In fact, one can explore and compare the probabilistic structure of any well-defined event
over a strike-zone region (for example, the probability a batter reaches base) using a similar approach.

2D animation

animateFX provides convenient and flexible functionality for animating the trajectory of any desired
set of pitches. For demonstration purposes, this section animates every four-seam and cut fastball
thrown by Mariano Rivera and Phil Hughes during the 2011 season. These pitches provide a good

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 12

Left−Handed Batter Right−Handed Batter

1

2

3

4

1

2

3

4

Left−
H

anded P
itcher

R
ight−

H
anded P

itcher

−2 −1 0 1 2 −2 −1 0 1 2
Horizontal Pitch Location

H
ei

gh
t f

ro
m

 G
ro

un
d

0.00

0.02

0.04

0.06
value

Figure 5: Difference between home and away pitchers in the probability of a strike (provided the
umpire has to make a decision). The blue regions indicate a higher probability of a strike for home
pitchers and red regions indicate a higher probability of a strike for away pitchers. Plots are faceted by
the handedness of both the pitcher and the batter.

example of how facets play an important role in extracting new insights. Similar methods can be used
to analyze any MLB player (or combination of players) in greater detail.

animateFX tracks three dimensional pitch locations over a sequence of two dimensional plots. The
animation takes on the viewpoint of the umpire; that is, each time the plot refreshes, the balls are
getting closer to the viewer. This is reflected with the increase in size of the points as the animation
progresses. Obviously, some pitches travel faster than others, which explains the different sizes within
the same frame. Note that animations in this paper revert to the initial point of release once all of the
baseballs have reached home plate. During an interactive session, animateFX produces a series of plots
that may not viewed easily. One option available to the user is to wrap animation::saveHTML around
animateFX to view the animation in a browser with proper looping controls (Xie, 2013a).

To reduce the time and thinking required to produce these animations, animateFX has default
settings for the geometry, color, opacity and size associated with each plot. Any of these assumptions
can be altered - except for the point geometry. In order for animations to work, a data frame with
the appropriately named PITCHf/x parameters (that is, x0, y0, z0, vx0, vy0, vz0, ax0, ay0 and az0) is
required. In Figure 6, every four-seam and cut fastball thrown by Rivera and Hughes during the 2011
season is visualized using the pitches data frame obtained earlier.

The upper right-hand plot of Figure 6 (Rivera throwing to right-handed batters) reveals the
clearest pattern in flight trajectories. Around the point of release, Rivera’s two pitch types are hard to
distinguish. However, after a certain point, there is a very different flight path among the two pitch
types. Specifically, the drastic left-to-right movement of the cut fastball is noticeably different from
the slight right-to-left movement of the four-seam fastball. In recent years, cut fastballs have gained
notoriety among the baseball community as a coveted pitch for pitchers have at their disposal. This is
largely due to the difficulty that a batter has in distinguishing the cut fastball from another fastball as
the ball travels toward home plate. Clearly, this presents an advantage for the pitcher since they can
use deception to reduce batter’s ability to predict where the ball will cross home plate. This deception
factor combined with Rivera’s ability to locate his pitches explain his accolades as one of the greatest
pitchers of all time (Traub, 2010).

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 13

animateFX(pitches, layer=list(theme_bw(), coord_equal(),
facet_grid(pitcher_name~stand, labeller = relabel)))

Figure 6: Animation of every four-seam and cutting fastballs thrown by NY Yankee pitchers Mariano
Rivera and Phil Hughes during the 2011 season. Pitches are faceted by pitcher and batting stance. For
instance, the top left plot portrays pitches thrown by Rivera to left-handed batters. Animations are
intentionally slower than real-time for visual recognition and should be viewed within Adobe Reader
(Xie, 2013b).

Although we see a clear pattern in Rivera’s pitches, MLB pitchers are hardly ever that predictable.
Animating that many pitches for another pitcher can produce a very cluttered graphic which is hard to
interpret (especially when many pitch types are considered). However, we may still want to obtain an
indication of pitch trajectory over a set of many pitches. A way to achieve this is to average over the
PITCHf/x parameters to produce an overall sense of pitch type behavior (via the avg.by option). Note
that the facet variables are automatically considered indexing variables. That is, in Figure 7, there are
eight ’average’ pitches since there are two pitch types, two pitchers, and two types of batting stance.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://get.adobe.com/reader/

CONTRIBUTED RESEARCH ARTICLE 14

animateFX(pitches, avg.by = "pitch_types", layer = list(coord_equal(), theme_bw(),
facet_grid(pitcher_name~stand, labeller = relabel)))

Figure 7: Animation of ’average’ four-seam and cutting fastballs thrown by NY Yankee pitchers
Mariano Rivera and Phil Hughes during the 2011 season. PITCHf/x parameters are averaged over
pitch type, pitcher and batting stance. For instance, the bottom right plot portrays an “average four-
seam” and “average cutter” thrown by Hughes to right-handed batters. Animations are intentionally
slower than real-time for visual recognition and should be viewed within Adobe Reader.

Interactive 3D graphics

rgl is an R package that utilizes OpenGL for graphics rendering. interactiveFX utilizes rgl functional-
ity to reproduce flight paths on an interactive 3D platform. Figure 8 has two static pictures of Mariano
Rivera’s 2011 fastballs on this interactive platform. This is great for gaining new perspectives on a
certain set of pitches, since the trajectories can be viewed from any angle. Figure 8 showcases the
difference in trajectory between Rivera’s pitch types.

Rivera <- subset(pitches, pitcher_name == "Mariano Rivera")
interactiveFX(Rivera, avg.by = "pitch_types")

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://get.adobe.com/reader/

CONTRIBUTED RESEARCH ARTICLE 15

Figure 8: 3D scatterplot of pitches from Rivera. Pitches are plotted every one-hundredth of a second.
Cutting fastballs are shown in red and four-seam fastballs are shown in blue. The left hand plot takes
a viewpoint of Rivera and the right hand plot takes a viewpoint near the umpire. Note these are static
pictures of an interactive object.

Conclusion

pitchRx utilizes XML2R’s convenient framework for manipulating XML content in order to provide
easy access to PITCHf/x and related Gameday data. pitchRx removes access barriers which allows the
average R user and baseball fan to spend their valuable time analyzing Gameday’s enormous source
of baseball information. pitchRx also provides a suite of functions that greatly reduce the amount of
work involved to create popular PITCHf/x graphics. For those interested in obtaining other XML
data, pitchRx serves as a nice example of leveraging XML2R to quickly assemble custom XML data
collection mechanisms.

Acknowledgements

Many thanks to my major professor, Dr. Heike Hofmann, for her direction and support throughout
this project. Thanks also to the anonymous reviewers for helpful feedback.

Bibliography

D. Adler, D. Murdoch, and others. rgl: 3D Visualization Device System (OpenGL). URL http://rgl.
neoscientists.org. R package version 0.93.963. [p2]

A. Alt and M. S. White. Tracking an object with multiple asynchronous cameras, 09 2008. URL
http://www.patentlens.net/patentlens/patent/US_7062320/. [p1]

N. DiMeo. Baseball’s particle accelerator, Aug. 2007. URL http://www.slate.com/articles/sports/
sports_nut/2007/08/baseballs_particle_accelerator.html. Last visited on 07/12/2012. [p1]

M. Fast. How to build a pitch database, Aug. 2007. URL http://fastballs.wordpress.com/2007/08/
23/how-to-build-a-pitch-database/. Last visited on 12/15/2012. [p2]

M. Fast. Spinning yarn: A zone of their own, July 2011. URL http://www.baseballprospectus.com/
article.php?articleid=14572. Last visited on 06/17/2013. [p9]

E. Green and D. P. Daniels. What does it take to call a strike? three biases in umpire decision making.
In MIT Sloan Sports Analytics Conference, 2014. [p8]

M. Marchi and J. Albert. Analyzing Baseball Data with R. Chapman and Hall/CRC, 2013. ISBN
9781466570221. URL http://baseballwithr.wordpress.com/. [p2]

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://rgl.neoscientists.org
http://rgl.neoscientists.org
http://www.patentlens.net/patentlens/patent/US_7062320/
http://www.slate.com/articles/sports/sports_nut/2007/08/baseballs_particle_accelerator.html
http://www.slate.com/articles/sports/sports_nut/2007/08/baseballs_particle_accelerator.html
http://fastballs.wordpress.com/2007/08/23/how-to-build-a-pitch-database/
http://fastballs.wordpress.com/2007/08/23/how-to-build-a-pitch-database/
http://www.baseballprospectus.com/article.php?articleid=14572
http://www.baseballprospectus.com/article.php?articleid=14572
http://baseballwithr.wordpress.com/

CONTRIBUTED RESEARCH ARTICLE 16

B. Mills. Rethinking ’loess’ for binomial-response PITCHf/x strike zone maps, Dec. 2010. URL http://
princeofslides.blogspot.com/2010/12/rethinking-loess-for-binomial-response.html. Last
visited on 06/20/2013. [p10]

A. Nathan. A statistical study of PITCHf/x pitched baseball trajectories, Feb. 2008. URL http:
//webusers.npl.illinois.edu/~a-nathan/pob/MCAnalysis.pdf. Last visited on 07/25/2012. [p1]

M. A. Pane, S. L. Ventura, R. C. Steorts, and A. C. Thomas. Trouble With The Curve: Improving MLB
Pitch Classification. ArXiv e-prints, Apr. 2013. [p1]

R Special Interest Group on Databases. DBI: R Database Interface, 2013. URL http://CRAN.R-project.
org/package=DBI. R package version 0.2-7. [p7]

C. Sievert. XML2R: EasieR XML Data Collection, 2014a. URL http://cpsievert.github.com/XML2R. R
package version 0.0.4. [p2]

C. Sievert. pitchRx: Tools for Scraping XML Data and Visualizing Major League Baseball PITCHf/x, 2014b.
URL http://cpsievert.github.com/pitchRx. R package version 1.0. [p1]

J. Traub. Mariano Rivera, king of the closers, June 2010. URL http://www.nytimes.com/2010/07/04/
magazine/04Rivera-t.html. Last visited on 02/04/2013. [p12]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer, New York, 2009. ISBN 978-0-387-
98140-6. URL http://had.co.nz/ggplot2/book. [p2]

H. Wickham and R. Francois. dplyr: A Grammar of Data Manipulation, 2014. R package version 0.1. [p7]

S. Wood. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, 2006. [p10]

Y. Xie. animation: An R package for creating animations and demonstrating statistical methods. Journal
of Statistical Software, 53(1):1–27, 2013a. URL http://www.jstatsoft.org/v53/i01/. [p12]

Y. Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, 2013b. ISBN 978-1482203530.
[p13]

Carson Sievert
Department of Statistics
Iowa State University
sievert@iastate.edu

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://princeofslides.blogspot.com/2010/12/rethinking-loess-for-binomial-response.html
http://princeofslides.blogspot.com/2010/12/rethinking-loess-for-binomial-response.html
http://webusers.npl.illinois.edu/~a-nathan/pob/MCAnalysis.pdf
http://webusers.npl.illinois.edu/~a-nathan/pob/MCAnalysis.pdf
http://CRAN.R-project.org/package=DBI
http://CRAN.R-project.org/package=DBI
http://cpsievert.github.com/XML2R
http://cpsievert.github.com/pitchRx
http://www.nytimes.com/2010/07/04/magazine/04Rivera-t.html
http://www.nytimes.com/2010/07/04/magazine/04Rivera-t.html
http://had.co.nz/ggplot2/book
http://www.jstatsoft.org/v53/i01/
mailto:sievert@iastate.edu

	Taming PITCHf/x Data with XML2R and pitchRx
	Introduction
	What is PITCHf/x?
	Why is PITCHf/x important?
	PITCHf/x applications
	Contributions of pitchRx and XML2R

	Getting familiar with Gameday
	Introducing XML2R
	Constructing file names
	Extracting observations
	Renaming observations
	Linking observations
	Collapsing observations

	Collecting Gameday data with pitchRx
	Storing and querying Gameday data
	Visualizing PITCHf/x
	Strike-zone plots and umpire bias
	2D animation
	Interactive 3D graphics

	Conclusion
	Acknowledgements

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PlayPauseLeft:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PlayPauseLeft:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:

